Determination of total dissolved inorganic carbon in freshwaters by reagent-free ion chromatography.
نویسندگان
چکیده
Studies of inorganic carbon cycle in natural waters provide important information on the biological productivity and buffer capacity. Determination of total inorganic carbon, alkalinity and dissolved carbon dioxide gives an indication of the balance between photosynthesis and respiration by biota, both within the water column and sediments, and carbon dioxide transfers from the water column to the atmosphere. There are few methods to measure and distinguish the different forms of inorganic carbon, but all require a measure or an indirect quantification of total inorganic carbon. A direct measurement of TIC in water is made possible by the introduction of electrolytic generated hydroxide eluent in ion chromatography which allows to detect a chromatographic peak for carbonate. The advantage of this method is that all the inorganic forms of carbon are converted in carbonate at eluent pH and can be detected as a single peak by conductivity detection. Repeatability of carbonate peak was evaluated at different levels from 0.02 to 6 mequiv.l(-1) both in high purity water and in real samples and ranged from 1 to 9%. The calibration curve was not linear and has to be fitted by a quadratic curve. Limit of detection was estimated to be 0.02 mequiv.l(-1). Accuracy has been estimated by comparing ion chromatography method with total inorganic carbon calculated from alkalinity and pH. The correlation between the two methods was good (R(2)=0.978, n=141). The IC method has been applied to different typologies of surface waters (alpine and subalpine lakes and rivers) characterised by different chemical characteristics (alkalinity from 0.05 to 2 mequiv.l(-1) and pH from 6.7 to 8.5) and low total organic carbon concentrations. This analytical method allowed to describe the distribution of TIC along the water column of two Italian deep lakes.
منابع مشابه
Inorganic carbon dominates total dissolved carbon concentrations and fluxes in British rivers: Application of the THINCARB model - Thermodynamic modelling of inorganic carbon in freshwaters.
River water-quality studies rarely measure dissolved inorganic carbon (DIC) routinely, and there is a gap in our knowledge of the contributions of DIC to aquatic carbon fluxes and cycling processes. Here, we present the THINCARB model (THermodynamic modelling of INorganic CARBon), which uses widely-measured determinands (pH, alkalinity and temperature) to calculate DIC concentrations, speciatio...
متن کاملPreconcentration and Determination of Chromium (III) from Sea Water Samples Using Ion Imprinted Activated Carbon
A simple ion imprinted amino-functionalized sorbent was synthesized by coupling activated carbon with iminodiacetic acid, a functional compound for metal chelating, through cyanoric chloride spacer. The resulting sorbent has been characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis, thermogravimetric analysis (TGA) and evaluated for the preconcentration and de...
متن کاملPreconcentration and Determination of Chromium (III) from Sea Water Samples Using Ion Imprinted Activated Carbon
A simple ion imprinted amino-functionalized sorbent was synthesized by coupling activated carbon with iminodiacetic acid, a functional compound for metal chelating, through cyanoric chloride spacer. The resulting sorbent has been characterized using Fourier transform infrared spectroscopy (FT-IR), elemental analysis, thermogravimetric analysis (TGA) and evaluated for the preconcentration and de...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of chromatography. A
دوره 1118 1 شماره
صفحات -
تاریخ انتشار 2006